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Abstract: 
A numerical study has been developed to analyze the wall conduction effect on natural 

convection heat transfer in a two dimensional vertical enclosure filled with phase change material 

(PCM) undergoing a melting process. One vertical wall of the enclosure is kept isothermally at a 

temperature higher than that of the phase change temperature while the other walls are kept 

insulated. A mathematical model has been developed based on the coupling of the equations that 

govern the phenomenon. The finite element method is used to develop this model to solve the 

transient behavior of melting phenomenon. Body-fitted curvilinear coordinates are used for 

treating the moving boundary (melting front). The effects of void fraction, i.e. wall thickness, 

wall and PCM thermophysical properties and Rayleigh number on the heat transfer 

characteristics and melting rate are investigated. 

Results obtained from this model have been verified through a comparison with those 

available in the existing publications. A new correlation equation for the average Nusselt number 

based on the total heat input with the melting rate, void fraction, wall and PCM thermophysical 

properties and operating conditions is derived. Other different correlation equations for the 

average Nusselt number at the wall-liquid phase interface and the melting rate based on the 

numerical results are also presented. 
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1. INTRODUCTION 
Conjugate heat transfer problems involving solid-liquid phase change in 

enclosures with natural convection in liquid phase has recently received considerable 

research attention. This is due to large number of applications, including latent heat 

storage, material processing, crystal growth, castings of metals, glass industry, 

purification of materials, and others.  The prediction of temperature distribution and 

melting-solidification rate is very important in some modern technologies. This is in order 

to control the fundamental parameters such as the speed of fabrication, incidence of 

defects as well as the influence on the final properties of products and the possibility of 

damage of the contact surface between the wall and phase change material. 

An increasing number of experimental and numerical studies have been performed 

on the coupled problem of phase change with natural convection in the melt layer and 

without wall conduction effect [1-4]. In these studies, the solid phase is maintained at the 

fusion temperature and the influence of heat conduction in the solid phase change 

material is not considered. The combined effects of natural convection in the liquid and 

the heat conduction in the solid phase of PCM have been studied for melting of ordinary 
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non-metallic solid [5,6], and melting of metallic solid [7]. The effect of liquid 

superheating during solidification in a square cavity is studied numerically by Rady et 

al.[8]. 

The effect of wall conduction on natural convection heat transfer without phase 

change in enclosures is studied experimentally by Olson and Glicksman [9], and 

numerically by [10, 11, 12]. A perturbation solution for the phase change problem during 

solidification involving the wall conduction and wall-PCM interfacial thermal contact 

resistance is introduced by Hawang et al. [13]. But their study was limited to the classical 

Stefan problem, i.e. neglecting natural convection in the liquid phase.  Many important 

physical heat transfer processes that occur across the liquid-solid interface during phase 

change have not been adequately studied and are not well understood. From the above, it 

can be concluded that, there is a shortage in the literature concerning with the effect of 

wall conduction on the melting heat transfer characteristics that consider the natural 

convection in the liquid phase.   

The purpose of the present paper is to examine numerically the influence of wall 

conduction material (non-metallic and metallic) on the rate of heat transfer and the rate of 

melting of the phase change material.  Vertical cavity configuration was chosen because 

of fundamental interest and numerous applications. Also, the effect of Rayleigh number, 

Stefan number, wall to liquid phase thermal conductivity ratio, wall to liquid thermal 

diffusivity ratio, and void fraction on the average Nusselt number and the melting rate is 

investigated.  

 

2. MATHEMATICAL FORMULATION 

2.1 Physical Model and Assumptions 
The proposed system is a rectangular enclosure preceded by an isothermal, vertical 

wall of definite thickness and having a finite thermal conductance. The other sides of the 

enclosure are kept adiabatically. A phase change material (PCM) is contained in the 

enclosure. The geometry of the physical system and coordinate system are shown in     

Fig. (1). The height of enclosure is denoted by H2, the width by H1 and the wall thickness 

by H3. Dimension of the enclosure normal to the plane of the diagram is assumed to be 

long. Hence, the problem can be considered to be a two-dimensional problem. The 

location of melting front at time t, is represented by S=S (y, t). The following assumptions 

are made: 

1-The thermophysical properties of the wall material and PCM are independent of 

temperature. 

2- Boussinesq approximation is assumed to be valid in the liquid phase of PCM. 

3- Volume change due to solid-liquid phase change is negligible. 

4-Liquid is assumed to be Newtonian and incompressible. 

5-Fluid motion in the melt is considered to be laminar. 

 

2.2 Governing Equations and Coordinate Transformation 
A-For the wall 
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B-For the liquid phase of PCM 

The conservation of mass, momentum, and energy for the liquid phase can be written as 

follows: 

(I) Mass conservation 
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(II) Momentum conservation 

a- X-Direction 
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b- Y Direction 
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(III) Energy conservation 
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C-For the solid phase of PCM 
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By eliminating the pressure between the two momentum equations (3-a) and (3-b) and 

introducing the definitions for vorticity and stream function in the following equations: 
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The main feature of the melting/solidification problems is the geometrical changes 

and movements of the irregular melting/solidification front interface. One resolution of 

this difficulty is to perform an immobilization transformation of coordinates. This 

simplifies the numerical analysis by transforming the irregular boundary to a fixed one of 

much simpler geometry, at the expense of complicating the governing equations. So, the 

problem of discretization at each time step is avoided.  Introducing the general 

Oberkampf transformation [14] as follows: 
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And applying this transformation for both phases of PCM, the following equations are 

obtained:  
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for the second phase (solid phase)  

let for the wall 
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The following are the dimensionless variables and groups appearing in the 

phenomenon and selecting suitable reference values for length, velocity, stream function, 

and vorticity 
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The immobilized normalized transformed equations for temperature, vorticity, and stream 

function are as follows: 

 

A: Liquid phase of PCM 

 

(i) Temperature Equation:- 
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(ii) Vorticity Equation:-       
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(iii) Streamline Equation:- 
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 (B): Solid phase of PCM 
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Where;   
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2.3 Boundary Conditions 
1- Temperature boundary conditions 
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2- Stream function boundary conditions 

On all liquid boundaries 

 w = 0.0                    (18) 

3- Vorticity boundary conditions 
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Where;  

w        refers to the nodal value at the no slip wall. 

w+1    refers to the adjacent interior node. 

N   is the dimensionless distance separating   this node pair. 

4- Boundary conditions for the moving interface 

 0.0 = SL                                            (20-a) 

The heat balance at the solid-liquid interface gives:  
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5- Boundary conditions for the conductive wall-liquid interface 
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2.4 Heat Transfer Characteristics 
2.4.1. The Average Nusselt Number at the Wall-Liquid PCM Interface  

Equations (12-16) are solved with the relevant boundary conditions given by Eqs.  

(17-21) to determine the temperature, the vorticity and the stream function distributions. 

The local Nusselt number is calculated from the temperature distribution as: 
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 The average Nusselt number at the wall-liquid phase interface is given by: 
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2.4.2. Average Nusselt Number for Melting Process  
The average heat transfer coefficient based on the total energy input to the system 

Qtot over the total elapsed time since the onset of the melting is defined by the following 

equation: 
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Where;  

  TW = (TH+TW-L)/2, TL = (TW-L+ TF)/2, TS = (TF +TI)/2 

So, the average Nusselt number can be given by: 
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After substituting Qtot in the above equation: 
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where  ** Ste .  , Scw=cW(TH-TW-L)/L and ScS = cS(TF-TI)/L 

 

2.5 Finite Element Formulation 
The immobilized transformed equations are formulated using the conventional 

Galerkin procedure [15-18], with the interpolation function as a weighted residual to 

derive the finite element equations. The finite element descritization in two-dimensional 

domain is carried out using linear triangular element. The temperature 
e
, the vorticity 


e
, and the stream function 

e
 in the element can be represented in terms of the nodal 

values m , m , and m respectively by a simple polynomial as follows: 
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Where; 
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 Nm: is the usual interpolation function and defined by:  

]cba)[A2/1(N mmmm                         (28) 

Where;   A is the element area and; 

23132123321 c , =b  ,   =a                                     (29) 

The other components are given by cyclic permutation of the subscripts in the 

order 1, 2, and 3. If the approximations given by Eq. (27) are substituted in the governing 

Eqs. (12-16), and the global errors are minimized using the above interpolation functions 

Ni as weighting functions.  After performing the weighted integration over the domain G and 

the application of Green’s theorem, this present model can be written in the equivalent matrix 

form as: 

 [K1] {} = {F1}, [K2] {} = {F2}, [K3] {} = {F3}        (30) 
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where;  

 E =  total number of elements, G bounded domain,  

   domain boundary,  
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Similarly, [K2], [K3], {F2} and {F3} can be written in the same manner. Equations (30) 

give three sets of algebraic equations which have been solved by Gauss elimination 

method. The finite element formulation and the resulting linear equations were solved 

through a computer FORTRAN program. 

 

3- MODEL VALIDATION 
To check the consistency and reliability of the present analysis, the present model 

predictions are compared with experimental results and model predictions obtained from 

Bekermann and Viskanta [7] for =1.0 i.e. no wall. Gallium is used as a phase change 

material. The properties and experiments characteristics used for comparison are 

illustrated in Table (1). 

Table (1): The properties and experiments characteristics [7] 
 

Pr = 0.0208,    *

LS = 1.105,   *

LSk  =1.0,   ScS =0.468,    
*

LS =0.969, Ra = 3.275x10
5
,   AR =1.0, and     =1.0 
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Figure (2a) shows the comparison between the measured experimental data [7], 

and the present model prediction for the temperature profile at different levels. Figure 

(2b) illustrates the comparison between the present model and the model used in [7] for 

determining the melting rate. From the figures, it can be concluded that the present model 

is in good agreement with the model used by Bekermann and Viskanta [7] as well as their 

experimental data.    

 

4- RESULTS AND DISCUSSIONS 
The effect of wall thickness, i.e., void fraction , which having the values of 0.98, 

0.926, 0.862 and 0.757 respectively, for metallic and non-metallic materials at different 

Rayleigh and Stefan numbers on the molten volume fraction is illustrated in Fig. (3). 

From the figure, it is indicated that the void fraction has nearly no effect for metallic 

material (copper) which having a value of wall to liquid phase thermal diffusivity ratio of 
*

LW =1350 and wall to liquid thermal conductivity ratio of *

LWk  =2600 and this behavior 

takes place for all values of Rayleigh and Stefan numbers. But for non-metallic wall 

material (building brick) having a value of wall to liquid phase thermal diffusivity ratio of 
*

LW =5 and wall to liquid thermal conductivity ratio of *

LWk  =5, a considerable effect of 

void fraction on the on the melting rate is illustrated. Also, from the figure, it is shown 

that as the void fraction increases i.e. the wall thickness decreases, the rate of melting 

increases. This is due to the decreased thermal resistance of the wall. The average Nusselt 

number based on the total heat input to the system, which is given by the derived equation 

(26), represented as Nutot/Ra
*1/4

, is illustrated in Fig. (4). This is for metallic wall material 

(a), and non-metallic wall material (b), for different Rayleigh and Stefan numbers. From 

the figure, it is shown that a sharp decrease of the average Nusselt at early times of 

melting process and this rapid decrease is larger for metallic wall than the non-metallic 

wall and this indicating that the conduction is the dominant mode of heat transfer. Then 

the average Nusselt number becomes nearly constant indicating that natural convection 

becomes the dominant mode of heat transfer. Also, it is shown from the figure that, the 

increase of the void fraction increases the Nusselt number for all times till reaching steady 

state condition.  

Figure (5) shows a significant effect of void fraction on the timewise variation of 

the average Nusselt Number at the wall/liquid PCM interface at different Rayleigh and 

Stefan numbers for non-metallic wall material whereas the effect of void fraction for 

metallic wall is insignificant for all values of Rayleigh and Stefan number 

 Different expressions for the modified Rayleigh number are suggested and many 

numerical runs are made for these expressions. From the results of these numerical runs, 

It was concluded that: when the modified Rayleigh number is )/)TT(Hg( FH

3

2  , the 

effect of wall properties disappeared. The effect of void fraction (wall thickness) 

disappeared when using modified Rayleigh number of )/)TT(Hg( FH

3

2  . (H1/H4). So, 

in this investigation the modified Rayleigh number takes the expression 

)/)TT(Hg( FLW

3

2    which represents the true Rayleigh number and gets the actual 

effects of wall thickness, wall properties, (design conditions) and Rayleigh and Stefan 
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numbers (operating conditions) on the melting rate and heat transfer characteristics for 

melting process in the enclosure. The effect of Rayleigh and Stefan numbers on the 

timewise variation of molten volume fraction, average Nusselt number based on the total 

heat input to the enclosure and the average Nusselt number at the wall-liquid phase 

interface for non-metallic wall is illustrated in Fig. (6). From the figure, it is noticed that 

as the Rayleigh and Stefan number increase the melting rate, the average Nusselt number 

at wall-liquid phase interface, and the average Nusselt number based on the total heat 

input increase. The same behavior is noticed for metallic wall is illustrated in Fig. (7).   

 The effect of wall properties represented by wall to liquid PCM thermal diffusivity 

ratio and wall to liquid PCM thermal conductivity ratio on the melting rate, average 

Nusselt number at the wall-liquid phase interface and the average Nusselt number based 

on the total heat input is illustrated in Fig. (8). From the figure, it is noticed that the effect 

of wall properties on the above variables is considerable for non-metallic materials but 

this effect is insignificant for metallic materials.   

 Figure (9a, b) shows the effect of wall properties on the timewise variation of 

modified Rayleigh and Stefan numbers respectively. From the figure, it is concluded that 

for metallic material both modified Stefan and Rayleigh numbers are almost constants 

and this is due to small temperature drop across the metallic wall and they are nearly 

equal to Rayleigh and Stefan numbers. Whereas both modified Rayleigh and Stefan 

numbers are sharply decreased at the start of melting process followed by an increase for 

sometime, finally they are decreasing as the melting process proceeds. This may results in 

decreasing the melting rate and this is clearly illustrated especially for small Rayleigh 

number and small void fraction. 

 The timewise motion of the melting front for Ra=1.14x10
8
, Ste=0.045, and 

=0.757 for metallic wall having *

LW  =1350, *

LWk  =2600, and non-metallic wall having 
*

LW =5, *

LWk  =5 is illustrated in Fig. (10a, b) respectively. The front locations are having 

a constant time interval  =0.018 apart.  At the start of melting process, the melting front 

interface motion is uniform across the height of the cavity (almost vertical). This behavior 

indicates that conduction is the dominant mode of heat transfer. As the time proceeds, the 

onset of natural convection is established in the top of the cavity and the front interface 

curvature increases. While at the bottom of the cavity, the front motion is very slowly and 

conduction is still the dominant mode of heat transfer. Also, as mentioned before from the 

figure, it is shown that the melting rate is decreasing as the time proceeds.    

 The transient stream function and isotherms contours for relatively low Rayleigh 

number, Ra=10
4
, Ste=0.137, =0.926 and high conductive wall material *

LW =1350, 
*

LWk  =2600, at  =0.053, 0.265, and 0.593 are illustrated in Fig. (11). It is seen that the 

streamline contours are nearly vertical and parallel to the hot wall and the position of 

minimum stream function seemed to be at the mid plane of the melt layer indicating that 

the conduction is the dominant mode of heat transfer. It is noted that the flow in the melt 

regime has a single circulating zone. The flat distribution of stream function around the 

central core means that the flow is stagnant. The transient stream function and isotherms 

contours for relatively high Rayleigh number, Ra=1.14x10
8
, Ste=0.045, =0.926 and low 

conductive wall material *

LW =5, *

LWk  =5 at  =0.053 and 0.108 is shown in Fig. (12). 

From the figure, it is shown that the intensification of the convection circulating flow is 
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indicated by the upward shifting of the vortex center to the region in the vicinity of the 

free surface. It was also found that the concentration of the streamlines in vertical 

direction which indicates that the velocity along the vertical wall and the melting front are 

higher than the velocities along the horizontal walls.           

 The results for the molten volume fraction and the average Nusselt number at the 

wall/liquid phase of PCM interface have been calculated over the ranges of Rayleigh 

number, void fraction, and thermal diffusivity ratios used. Correlation equations for the 

molten volume fraction and the average Nusselt number at wall-liquid phase interface 

have been obtained from the least squares fit of the numerical results as:       

For metallic wall: 

0.0260.522

o

Ra  78.0
V

V
                        (31) 

for 84 5.7x10Ra10  ,6.0  , with maximum deviation of 7% 
0.2030.297

w Ra  25.0Nu                         (32) 

for 84 5.7x10Ra10  ,6.0  ,  with maximum deviation of 9% 

For non-metallic wall:  

1794.0*

L-W

1.42470.6720.74396-

o

  Ra  4.477x10 
V

V
           (33) 

for 85 0.98,0.757 ,10x7.5Ra1.14x10 ,37.0 *

L-W

88  ,with maximum deviation 

of  10% 
3738.0*

L-W

3.670.46150.5736-3
w   Ra  1.99x10 Nu            (34) 

for 85 0.98,0.757 ,10x7.5Ra1.14x10 ,315.0 *

L-W

88  , with maximum 

deviation of 12% 

For metallic and non-metallic walls: 
0647.0*

L-W

0.25110.036654.0

o

  Ra  0.464 
V

V
            (35) 

1289.0*

L-W

1.3650.22150.369
w   Ra  0.11147 Nu             (36) 

for 13505 0.98,0.757 ,10x7.5Ra10  ,6.0 *

L-W

84  , with maximum deviation 

of 14% 
 

5- CONCLUSION 
From the results reported in this paper, it may be concluded that:- 

1- The front location, shape and the melting rate are predicted. 

2- The heating conditions, (i.e. Stefan and Rayleigh numbers) have large effect on the 

melting rate and average Nusselt number at wall-liquid phase for both metallic and 

non-metallic walls  

3- The void fraction has a large effect on the melting rate and the heat transfer 

characteristics for non-metallic wall and has insignificant effect for metallic wall.  

4- The melting rate and heat transfer characteristics are affected to a large extent due 

to the variation of the wall-liquid phase thermal conductivity and diffusivity ratios 
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for non-metallic wall material whereas they are not affected greatly by the 

properties for metallic material.  

5- At low Rayleigh numbers and high wall/liquid thermal conductivity and diffusivity 

ratios, where the conduction is the dominant mode for heat transfer large molten 

volume fraction can be obtained. 

6- At small void fractions and small Rayleigh numbers for non-metallic wall material 

after some time, there is a decrease in the melting rate and this is due to the 

decrease in both modified Stefan and Rayleigh numbers.    

7- There is a need for new definition of modified Rayleigh number and a new 

characteristic length other than the cavity height.    
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NOMENCLAUTRE 
  SI units were applied for the whole dimensional variables used in this paper.   

a1,b1,c1     coefficients in Eq. (29) 

AR           aspect ratio   
Subscripts:- 

A             element area 

c              specific heat  
F       fusion       

H      hot 
D             enclosure depth 

E              total number of elements 

{F}          vector array Eq. (30) 

I       initial  

l       lower   

L      liquid phase of PCM 
Graviion  g              gravitational acceleration     

G             G             computational domain  

h.             heat transfer coefficient 

o       reference 

S       solid phase of  PCM 

S-L    solid –liquid interface 
H1            enclosure length u       upper 
H2            enclosure height W-L  wall – liquid interface 
H3            wall thickness W     wall 
k.             thermal conductivity  
[K]           stiffness matrix Eq. (30) Superscripts:- 
[Kc]          heat capacity matrix  '        first derivative w.r.t  
L              latent heat, J/kg         second derivative w.r.t  
N           dimensionless distance between    

                two adjacent nodes in the normal    

                direction to the wall 

N1,..,3        interpolation functions  

P              pressure 

Qtot           heat input 

{R}          unknown variable array, Eq. (30)  

.       first derivative w.r.t.  

e       element level    

---    average value  

T      transpose 

 

    Dimensionless Groups:-                     

        Dimensionless time =Froude number 


*
 = Ste

*
.  = modified  dimensionless time                                                     

S              front location 

T              temperature 

t               time  

u              velocity component in x-direction 

Uo                reference velocity 

k
*
S-L   solid-liquid thermal conductivity  

           ratio 

k
*
W-L   wall-liquid thermal conductivity  

           ratio 
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U            dimensionless velocity component     

               in x-direction 

v             velocity component in y-direction 

    Nuy      local Nusselt number at wall-liquid             

            interface    

Nu W-L  average Nusselt number at wall- 
V            dimensionless velocity component                  liquid PCM interface 
               in y-direction 

x, y         Cartesian coordinate 
Nu tot  average Nusselt number based on the 

           total input heat 
X            dimensionless front location Ra      Rayleigh number 

Greek letters  

  

             thermal diffusivity                          

             coefficient of thermal expansion 

Ra
*     

 modified Rayleigh number 

Ste      Stefan number  

Ste
*
    modified Stefan number        

Scw     wall subcooling parameter 

1,2,3       domain boundary Scs     solid subcooling parameter              
         density 

          void fraction  

        = volume of PCM/enclosure volume 

 stream function 

        dimensionless stream function 

*

LS    solid-liquid thermal diffusivity  ratio 
*

LW   wall-liquid thermal diffusivity ratio 
*

LS    solid-liquid density ratio 
*

LW   wall-liquid density ratio 
        vorticity  

       dimensionless vorticity  

,     dimensionless coordinates  

       dimensionless temperature  
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Fig. (1) Schematic diagram of the problem 

                                          (a): Conventional coordinate system (x, y, t) 

                                          (b): Immobilized coordinate system (, , ) 
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Fig. (2a) Comparison between the present predicted temperature  

distributions and experimental work [7] 
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Fig. (2b) Comparison between the present model predictions for  

    the melting rate and that predicted in Ref. [7] 
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Fig. (3) Effect of void fraction on the melting rate at different Rayleigh and Stefan 

numbers for (a) metallic wall 1350 ,2600 **   LWLWk    (b)  5 ,5 **   LWLWk   
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Fig. (4) Effect of void fraction on the average Nusselt number at different Rayleigh and 

Stefan numbers for (a) metallic wall 1350 ,2600 **   LWLWk    (b)  5 ,5 **   LWLWk   
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Fig. (5) Effect of void fraction on the timewise variation of the average Nusselt number 

at the wall-liquid PCM interface at different Rayleigh and Stefan numbers for 

 (a ) metallic wall 1350 ,2600 **   LWLWk    (b)  5 ,5 **   LWLWk   
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Fig. (6c) Timewise variation of the average  

               Nusselt number at wall-liquid  

               PCM interface for different  

               Rayleigh and Stefan numbers  
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Fig. (9a) Timewise variation of the modified Rayleigh number for metallic walls 

 (curves 1, 2),  and non-metallic walls (curves 3, 4) 
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Fig. (9b) Timewise variation of the modified Stefan number for metallic 
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Fig. (9b) Timewise variation of the modified Stefan number for metallic walls 

 (curves 1, 2) and non-metallic walls (curves 3, 4) 
 

                     
(a) (b) 

Fig. (10) Timewise motion of the melting front (Ra=1.14x10
8
, Ste=0.045, =0.757, 

AR=2  for  (a) 1350 ,2600 **   LWLWk    (b) 5 ,5 **   LWLWk   
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Fig. (11) Transient contours of stream function (top) and isotherms (bottom) 

             (Ra=10
4
, Ste=0.137, 0.926 ,0.2A ,1350 ,2600 R

**    LWLWk ) 
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Fig. (12) Transient contours of stream function (left) and isotherms (right) 

                (Ra=10
4
, Ste=0.137, 0.926 ,0.2A ,1350 ,2600 R

**    LWLWk ) 

 

 

 

 

 


